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A technique is described for measuring the local phase speed in a turbulent flow.
The technique has been used to measure the phase speed of the Fourier compo-
nents of the longitudinal velocity fluctuations in grid turbulence. These measure-
ments are unique in that the probe spacing is only twice the Kolmogoroff length
scale. The velocity fluctuations were measured with linearized constant-
temperature hot-wire anemometers, the outputs of which were digitally sampled
and recorded in real time. Digital Fourier analysis techniques were then used to
calculate the cross-spectral density of the two velocity measurements. From this,
the phase, phase speed, and coherence were calculated. The coherence has been
used to estimate the variance of these measurements.

1. Introduction

It is well known that the propagation speed of velocity fluctuations in shear
layers depends both on spatial location and frequency. Measurements of space-
time correlations in shear flows, such as those of Fisher & Davies (1964) and
Favre, Gaviglio & Dumas (1967), have led to various definitions of the apparent
propagation speed. All previously reported measurements have been made at
such large spatial hot-wire separations that temporal fluctuations have reduced
the cross-correlation for optimum time delay to values significantly less than
unity. Thus, these measurements of convection velocity were non-local in the
sense that the spatial fluctuation patterns observed at both probes were not
exactly the same. The preceding comments also apply to cross-correlations of the
filtered signals made to determine the frequency dependence of the convection
velocity.

The present paper discusses an initial attempt to define and measure a local
propagation speed of Fourier components of the velocity field by comparing
velocity fluctuations at two points that are separated by a distance comparable
with the smallest characteristic length scales for temporal change of the fluctua-
tions, so that the correlation between the two velocity signals is essentially unity.
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690 G. R. Stegen and C. W. Van Atta

Such a technique will be particularly useful in investigating free jet flows, where
the propagation speed varies rapidly with distance (Stegen 1967).

1.1. Measurement technique

The propagation speed of fluctuations can be measured as a function of frequency
by calculating the phase speed C(f) from the phase difference ¢(f) between the

two signals, O(f) = 2afd|¢(f),

where d is the transducer spacing in the direction of the mean flow.

This measurement is significant only if the coherence (defined in § 3.1) between
the signals is high. Since the coherence is frequency dependent, this condition is
stronger than requiring that the cross-correlation be high. The condition of high
coherence will be satisfied if the turbulence pattern has been convected over the
distance d essentially unchanged by the temporal fluctuations. In such a case we
can identify C(f) as the true phase speed of those Fourier components of the
turbulent energy spectrum.

To determine the local propagation speed of turbulent fluctuations one should
measure the phase speed with two probes separated by a distance comparable
to the smallest scale of interest. For velocity fluctuations the relevant small-scale
parameter is the Kolmogoroff length L, = (¢/v?)~%, where ¢ is the dissipation rate.
To test the limitations of the method, the probes were spaced about 2L, apart.

We chose to make these initial measurements in an unsheared, low-intensity
grid-generated turbulent field to avoid some of the possible complications in
interpretation noted by Lumley (1965). For this flow field we expect the phase
speed to be independent of frequency. Frenkiel & Klebanoff (1966) have measured
higher-order space-time correlations under similar experimental conditions.
Although their second-order space-time correlations were consistent with
Taylor’s hypothesis, their results for higher-order correlations led them to specu-
late that even for grid turbulence the propagation speed may depend on the eddy
size. When they compared their measured space-time correlations with one-point
time correlations displaced appropriately using Taylor’s hypothesis based on
the mean speed, they found that odd- and even-order correlations were displaced
in opposite directions from the nominal position predicted by the frozen pattern
hypothesis. Reasoning that the odd-order correlations may be governed by a
different range of eddy sizes (weighted toward the large eddies) from the even-
order correlations, they inferred that the propagation speed might be a function of
eddy size. From their limited amount of data no general trends were apparent. For
example, their odd-order correlations are sometimes displaced downstream, indi-
cating that for the particular sample of data the apparent translational velocity is
smaller than U, whereas for other samples and different probe spacings the same
correlations are shifted upstream, indicating a velocity somewhat greater than U.

More recently, Corrsin & Comte-Bellot (private communication) have made
extensive measurements of filtered second-order space-time correlations in grid
turbulence. Their results again verified Taylor’s hypothesis for this flow field.

The probe spacing used here was extremely small compared to the smallest
spacing (& 21Lg) used by Frenkiel & Klebanoff (1966). This results in phase
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differences of only 4° at 100 Hz. The usual analogue techniques are not easily
adapted to measurement of such small phase differences. Instead, the phase has
been calculated from the cross-spectral density by digital techniques. The cross-
spectral density was measured using the digital harmonic analysis method
described by Van Atta & Chen (1968a). The essence of the method is to use the
‘fast Fourier transform’ algorithm of Cooley & Tukey (1965) to obtain the
discrete Fourier transform of a sampled time series. The analysis of the data then
proceeds along the usual lines of digital spectral analysis (see, for instance, Munk,
Snodgrass & Tucker 1959).

2. Experimental arrangement

The experiments were carried out in the 76 cm by 76 cm by 9 m test section of
the low-turbulence wind tunnel in the Department of Aerospace and Mechanical
Engineering Sciences. A biplane grid of round, polished dural rods (0-953 cm
diameter, mesh spacing M = 5:08 cm) was located 2-4 m from the end of the con-
traction section. The mean velocity U was 7-7m/sec, giving a grid Reynolds
number (UM [v) = 25,300. All measurements were made at a downstream loca-
tion X/M = 48, where X is the distance measured downstream from the centre
of the grid. The longitudinal turbulence intensity ,/{u?) at this point was 1-6 %,
of the mean velocity.

Van Atta & Chen (19685) have made quantitative measurements of the
frequency range over which our example of grid turbulence can be considered
locally isotropic. The energy spectrum of the transverse fluctuations (v) was
compared to the spectrum deduced from the energy spectrum of the longitudinal
fluctuations (u) using the isotropic relations. For the flow conditions of this
experiment, they find good agreement and hence local isotropy for frequencies
greater than about 80 Hz.

Conventional analogue measurement techniques were used to determine the
dissipation rate e = —3d({u?)+2{»?)/df. The Kolmogoroff length scale
L, = (¢/y3)t was 0-047cm, and the Kolomogoroff time scale o = (v/e)t was
0-0143 sec.

A special probe was built to measure « at two closely spaced locations. Two
tungsten wires (0-5mm sensitive length, 0-0038 mm diameter) were mounted
parallel to each other with 0-089 cm longitudinal spacing (~ 2L,) and displaced
laterally 0-0125cm. The lateral displacement was necessary to prevent inter-
ference from the forward wire and probe tips. The wires were operated in the
linearized constant-temperature mode using DISA 55A01 anemometers and
DISA 55D10 linearizers. The overheat ratios were about 0-3. The linearized
velocity signals were preconditioned by first removing the d.c. level, then ampli-
fying, and finally low-pass filtering. The two signals were then simultaneously
sampled and recorded on-line by an analogue-digital converter and digital tape
recorder. The sampling rate for each channel was 4170 samples/second, a value
sufficiently high to prevent aliasing of the energy spectrum. The frequency
characteristics of the system components were carefully matched to prevent
interchannel phase errors.
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3. Digital cross-spectral analysis
3.1. Phase speed calculations
We denote two discrete time series by x() and y(t), wheret = 0,1,...,N—-1; N is

the number of samples in the series.
The discrete Fourier transforms of the time series are denoted by

X(f) = Fla(t) = ATNil x(t) exp ( —j27mftAT),
t=0

N
Y(f) = Flyo} = A7 % ylt)exp (—j2ftan)

where f=0, Af,...,(N—1)Af, X(f) and Y(f) are complex, and Ar is the
sampling interval. The frequency interval Af of the transform is given by
Af=1/(NAt) = 1T, where T is the record length.

The energy spectra are -

E(f) = X(F) X*NIT,

E(f) = Y() Y*NIT,
where * denotes the complex conjugate, and the bar denotes the ensemble

average over the realizations.
The cross-spectrum is

Sa(f) = X() YHAIT = Co(£) = 1Qu( ),
where C,, and @, are the co-spectrum and the quadrature-spectrum.
The coherence B%} and phase ¢ are given in terms of the spectra

Rf) = 8.,() Sz, (NEL) B\ (),
¢xy(f) = _t’a’n_l(sz(f)/Oa:y(f))'

The phase defined in this way is the phase lead of «(f) relative to y(f). The phase
can alternatively be written as a time delay 7(f), where

7(f) = be(f)/27f.

The coherence plays the role of a correlation coefficient defined at each frequency.

It is a measure of the linear dependence of the two time series. By Schwarz’s

inequality, the coherence isbounded in the region 0 < R? < 1. In the nextsection,

we will see how the coherence affects the reliability of our phase estimation.
The phase speed, which is defined as

Of) = 2nfd|¢.,(f)

is the apparent propagation speed of spectral components of frequency f. This
definition is the same as used earlier by Lumley (1965).

3.2. Phase errors

Before applying the proposed technique it is important to appreciate the
theoretical limitations involved in the estimates of the phase. The following
discussion of phase errors is based on the assumption of Gaussianity. In grid

T Some authors prefer to call R the coherence, and R? the ‘squared-coherence’.
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turbulence the non-zero value of the triple-correlation indicates a non-Gaussian
character, but the longitudinal fluctuations at a single point, and even-order
two-point correlations are closely represented by Gaussian processes (Frenkiel &
Klebanoff 1965; Van Atta & Chen 1968a).

The cross-spectral estimates of bivariate stochastic processes derived from
finite length records are subject to a random error. For such Gaussian processes,
the confidence limits for the phase angle ¢, have been given by Goodman (1957).
There is a probability p that the true phase will lie in the interval ¢, + A¢, where

__p2
sintAg =+ o (1 -p)# - 1),

where v is the number of statistical degrees of freedom and R% is the true value

of coherence. For the ‘fast Fourier transform’ algorithm, the value of v is twice

the number of realizations. Now, for » > 200, the 95 9%, confidence limits for the

coherence are less than + 29, of the measured value R2, for all values of

B2 > 0-80 (Amos & Koopmans 1963). Under these conditions we can replace the

true coherence B2, by the measured value R? with little error in our estimate of Ag.
The 95 9, confidence limit for » > 200 reduces to

1-R2/6\\}
s ()
where A¢ is in radians.

For the present data the coherence is essentially constant at low frequencies,
so that A¢ is independent of frequency in that range. Since the phase decreases
monotonically with decreasing frequency, a point will be reached where the
magnitudes of ¢,, and A¢,, are comparable. Such a point represents a lower
bound on the range of frequencies where this technique is usable.

3.3. Influence of signal/noise ratio

In § 3.2 we saw the key role that the coherence plays in the phase analysis. A high
value of coherence is essential if reasonable estimates of the phase are to be
obtained. A small probe separation was chosen to ensure that the turbulent
fluctuations would be well correlated, i.e. highly coherent. However, the
coherence estimate is strongly influenced by the noise superimposed on the
signals. If the two signals x(¢) and () are linearly related, and if the noise signals
are uncorrelated, then the coherence is given by (see, for example, Jenkins &
Watts 1968) 1

BN = e ey

where NN, N, are the noise/signal ratios for the two signals. We see now the
importance of maintaining a high signal/noise ratio if the true coherence is to
be measured.

In this experiment the noise was determined by the least count error of the
A-D converter at a level equivalent to 0-2 cm/sec. Consequently, the decrease in
energy with increasing frequency resulted in an increase in ¥, and therefore a
decrease in R2. To improve the signal/noise ratio, it would suffice to increase
the resolution of the A-D converter.
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3.4. Data analysis

The data were processed on a CDC 3600 computer. The simultaneous time series
were divided into 100 pairs of records, each 0-492 sec long containing 2048 data
samples. The discrete Fourier transform of each record was calculated using the
‘fast Fourier transform’ algorithm. The frequency interval (Af) of the Fourier
transforms was 2:04 Hz. The spectra were then calculated and ensemble averaged
over the 100 records (200 degrees of freedom). Next, the spectra were smoothed
using a simple Hanning filter (Blackman & Tukey 1958). This operation increases
the effective number of degrees of freedom by about a factor of 2, with a sub-
sequent decrease in the variance of the phase estimate. The coherence, phase,
and phase speed were then computed from the smoothed spectra. Analysis of
a set of data, including plotting, required about 7min of computer time.

4. Results
4.1. Sivmulated phase shift

In order to demonstrate the capabilities of the technique, it was first used to
measure an artificial phase shift. The anticipated phase shift was simulated
electronically with an analogue low-pass filter. The filter attenuation and cut-off
frequency were adjusted to give a linear phase shift in the range 0-600 Hz, with
a value of 24° at 600 Hz. The filter thus produced a constant time delay of 111 usec,
a good model of the 115 usec delay expected during the experiments. The turbu-
lence signal from one hot-wire was taken as the input: x(f). This signal was then
phase shifted (time delayed) with the filter to give the second signal: y(z).

The coherence spectrum obtained in the simulation is shown in figure 1. The
coherence is 0-99 over most of the range, as one would expect, since the filter adds
very little noise in the frequency band of interest. The loss of coherence above
500 Hz is due to band-limiting of the input signal at about 600 Hz with a second
low-pass filter. This decreased the signal/noise ratio, and consequently the
coherence (see § 3.3). The associated phase spectrum is given in figure 2. Allowing
for the statistical fluctuations, the phase varies linearly with frequency up to
500 Hz. At this point the variance of the phase increases rapidly corresponding
to the drop in coherence. Equally important, the phase plot begins to depart
from a linear relation at this point, indicating a bias in our estimate of the phase
due to the drop in coherence.

Since we are interested in generating a constant time-delay, we have also
plotted the time-delay spectrum in figure 3. The influence of statistical phase
errors on the measured time delay are clearly evident here. Below 50 Hz the
fluctuations overwhelm the measurement, making the technique unusable in this
range. In the frequency range 100 Hz to 500 Hz the estimated time delay is about
4 psec less the value inferred from the analogue measurement of the filter phase
shift. This small time error is due to slight electronic differences in the sample
and hold amplifiers used in the A-D converter. Above 500Hz the variance
increases, and the estimate is negatively biased.

From figure 3 we see that we are able to resolve time-delays considerably
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smaller than the sampling interval of 250 usec. If we were prepared to accept
accuracies of + 20 9,, we could measure time delays of 20 zsec under the present
conditions. At 100 Hz this corresponds to a phase shift of 0-7°, an almost impos-
sible measurement to make by analogue methods. Herein lies the inherent
advantage of the present technique. By examining the coherence and phase
rather than the band-limited correlation, one can resolve very small time delays
with the bonus of obtaining results over a wide range of frequencies with a single
calculation.
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phase shifted. ———, predicted spectrum.

4.2. Phase speed measurements
The one-dimensional velocity spectra E(f) measured by the two hot-wires are
compared in figure 4. For clarity we have plotted only a few of the 1024 data
points measured for each spectrum. The two spectra are practically identical,
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indicating that the front hot-wire did not interfere with the rear hot-wire. How-
ever, the rear hot-wire did detect some vortex shedding from the front probe
supports. The shedding frequency was 3300 Hz, well beyond the limits of the
turbulent energy spectrum, and was readily removed by low-pass filtering.

The coherence (figure 5) between the two signals was quite high, as one would
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Ficure 3. Time delay spectrum deduced from the data of figure 2.
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expect at such close spacings. The maximum coherence was = 0-96, indicating
that the signals are not exactly the same. The loss in maximum coherence was
primarily due to the finite resolution of the wires, whose length was only about
one-half the separation distance. Strong dips are present in the coherence
spectrum at the line frequencies and all higher harmonics. Close inspection of the
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Fiaure 5. Coherence spectrum measured between two hot-wires in a
turbulent flow with a streamwise separation of 2L,.
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FI1GURE 6. Phase spectrum measured between two hot-wires with a streamwise separation
of 2L;. — -—, value predicted at the mean speed. The data shown is a computer generated
plot of 294 date points with a frequency interval of 2-04 Hz.

computed spectra indicated that one signal had an excessive amount of 60 Hz
noise. This resulted in a locally reduced signal/noise ratio, which apparently
accounts for the loss of coherence at 60 Hz and its harmonics. The coherence
drops to = 0-85 at 600 Hz, due to the decrease in signal-to-noise ratio as the
energy spectrum falls off.

The measured phase spectrum is shown in figure 6. We note a marked increase
in the variability of ¢,, as compared to the artificial phase shift case, a con-
sequence of the reduced coherence. More significant is the deviation from the
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expected curve at frequencies below 300Hz. This was at first interpreted as
implying that the low frequencies propagate at less than the mean speed (Stegen
& Van Atta 1968), a result in conflict with the conclusions of earlier investigators.

As indicated earlier, great care was taken to prevent electronic phase errors.
As a final check on the system, two wires were arranged in the same longitudinal
plane, parallel, and laterally spaced 0-089 cm apart. Measurements of the phase
spectrum for this configuration indicated a relative phase shift between the two
anemometers in the frequency range 0-300 Hz. The time error inferred from the
phase spectrum had a maximum value of about 40 gsec. This small difference
would represent a negligible error for most anemometer measurements. The time
delay is due to small electronic differences between the two anemometers. How-
ever, we were unable to determine exactly where in the anemometers the
mismatch occurs.
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Fraure 7. Phase speed spectrum deduced from the data of figure 6. ®, data corrected for
electronic mismatch of anemometer systems. ————, mean speed, U = 7-7 m/sec.

To complete the demonstration of the technique, the measured anemometer
time delay errors were used to correct the experimental data. The final measured
phase speed spectrum is given in figure 7. The single points represent the corrected
data, where the value has been averaged over a band 22-4 Hz wide. Because of
the large uncertainty at low frequencies, no data is presented in the range
0-80 Hz. Above 300Hz the uncorrected data was plotted every 2-0Hz as
originally calculated. The data indicates an average phase speed of 7-4 m/sec,
compared to the mean speed of 7-7m/sec. If we also account for the time errors
introduced by the A-D converter, the average phase speed agrees with the mean
speed within + 19,

The present measurements are a systematic extension of the Fourier analysis
techniques used to determine the energy spectrum of the velocity fluctuations.
The measured phase speed is the propagation speed which can be associated with
each frequency in the energy spectrum. We emphasize that this interpretation is
valid only in the frequency range where the coherence remains high. The results
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clearly demonstrate the validity of the technique. The variance of the estimate
for this case is a little high for general application. However, the variance could
be reduced to less than 4 %, by optimizing the statistics and probe configuration
for a particular flow field.

5. Summary

Digital harmonic analysis employing the fast Fourier transform algorithm
has provided an efficient means for measuring very small phase shifts between
two time series. Using digital methods, a technique for measuring local phase
speeds in turbulent velocity fields has been developed. In developing the
technique, we have drawn heavily upon the similar work by Munk, Snodgrass &
Tucker (1959) in ocean waves. This study has emphasized the theoretical and
practical considerations which limit the application of the technique.
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